Бегун.Рекомендую - рекламодателю
Здесь может быть ваша реклама
|

 4.2.4. Зависимые источники сигналов

4.2.4. Зависимые источники сигналов

Зависимые источники напряжения и тока могут быть как линейными, так и нелинейными. Существует четыре их разновидности:

v = e(v) - источник напряжения, управляемый напряжением (ИНУН);

i = f(i) - источник тока, управляемый током (ИТУТ);

i = g(v) - источник тока, управляемый напряжением (ИТУН);

v = h(i) - источник напряжения, управляемый током (ИНУТ).

Линейные управляемые источники описываются зависимостями v = ev, i = fi, i = gv, v = hi, где е, f, g и h - коэффициенты передачи.

В описании нелинейных зависимых источников у = у(х 1 , х 2 , ..., х п ) используется полиномиальная функция POLY вида

У = P 0 + P 1 x 1 + P 2 x 2 +...+ P n x n ...

Здесь х 1 , х г , ..., х п - п управляющих переменных. Они могут быть токами или разностью потенциалов; одновременное управление током и разностью потенциалов не допускается. Все коэффициенты полинома Я вводить не обязательно, но вводить их необходимо подряд без пропусков. При одномерном управлении (п = 1) допускается следующая форма полинома у(х):

При п = 2 полином приобретает вид

y = Р 0 + P 1 x 1 + Р 2 х 2 + P 3 x 2 1 + Р 4 х 1 х 2 + Р 5 х 2

Рассмотрим подробно все четыре типа зависимых источников. Источник напряжения, управляемый напряжением (ИНУН), задается предложениями:

1) линейный источник:

Еххх <+узел> <-узел> <+управляющий узел> <-управляющий узел> + <коэффициент передачи>

2) нелинейный источник:

Еххх <+узел> <-узел> POLY(<n>)<< + управляющий узел> + <-управляющий узел>>* + <коэффициент полинома>*

Например, линейный источник ELIN=2,5V 10.11 описывается предложением

ELIN121011 2.5

Нелинейный источник ENONLIN = 0 + 13,6V 3,0 + 0,2V 4,6 + 0,0051V 3,0 (рис. 4.16, a)- предложением

ENONLIN 50 51 POLY(2) (3,0) (4,6) 0.0 13.6 0.2 0.005

Источник тока, управляемый током (ИТУТ), задается следующим образом:

1) линейный источник:

Fxxx <+узел> <-узел> <имя управляющего источника напряжения> + <коэффициент передачи>

2) нелинейный источник:

Fxxx <+узел> <-узел> POLY(<n>)

+ <имя управляющего источника напряжения>*

+ <коэффициент полинома>*

Управляющим током служит ток независимого источника напряжения. Например, линейный источник тока F1=7,5I V4 (рис. 4.16, б) описывается предложением .

F1 2 1 V4 7.5

Нелинейный источник тока -

FNONLIN = 0,01 + 13,6I VС1 + 0,2I VС2 + 0,0054, + 0,001I VC1 I VС2

предложением

FNONLIN1011 POLY(2)VC1 VC2 0.01 13.60.20.0050.001

Иллюстрированный самоучитель по OrCAD, Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

а)

Иллюстрированный самоучитель по OrCAD, Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

б)

Рис. 4.16. Нелинейный (а) источник напряжения, управляемые напряжением, и линейный источник тока, управляемый током (б)

Источник тока, управляемый напряжением (ИТУН), задается предложениями:

1) линейный источник:

Gxxx <+узел> <-узел> <+управляющий узел> <-управляющий узел> + <коэффициент передачи>

2) нелинейный источник:

Gxxx <+узел> <-узел> POLY(<n>) «+управляющий узел> + <-управляющий узел>>* <коэффициент полинома>*

Источник напряжения, управляемый током (ИНУТ), задается следующим образом:

1) линейный источник:

Нххх <+узел> <-узел> <имя управляющего источника напряжения> + <коэффициент передачи>

2) нелинейный источник:

Нххх <+узел> <-узел> POLY(<m>)

+ <имя управляющего источника напряжения>*

+ <коэффициент полинома>*

Замечание.

В связи с тем, что в описаниях линейных управляемых источников не допускается использование параметров и функций, в этих целях можно воспользоваться зависимыми источниками с нелинейными передаточными функциями (см. п. 4.2.5).

Одно из применений нелинейных зависимых источников - генерация ампли-тудно-модулированных сигналов. В качестве примера на рис. 4.17, а показана схема создания источника радиоимпульсов, а на рис. 4.17, б - эпюры напряжений, полученные в результате выполнения следующего задания на моделирование:

RADIOSIGNAL

VSIN 1 OSIN(0 1 100)

VPULSE 2 О PULSE(0 1 0 0.25 0.25 0.5 1)

GSIGNAL 0 3 POLY(2)(1,0)(2,0) 00001

R1101MEG

R2201MEG

R3301MEG

.IRAN 0.01 1.6

.PROBE V(1)V(2)V(3)

.END

Здесь VSIN - источник гармонического сигнала с частотой 100 Гц; VPULSE - источник импульсного напряжения с периодом повторения 1 с. Перемножение этих сигналов с помощью нелинейного источника тока GSIGNAL создает последовательность радиоимпульсов.

Наличие зависимых источников позволяет моделировать не только электрические принципиальные схемы, но и функциональные схемы динамических систем с обратными связями, а также решать системы дифференциальных уравнений.

Иллюстрированный самоучитель по OrCAD, Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг а)

Иллюстрированный самоучитель по OrCAD, Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг б)

Рис. 4.17. Формирование последовательности радиоимпульсов: а - формирователь сигнала; б - эпюры напряжений

Рассмотрим в качестве примера усилитель постоянного тока с квадратором в цепи обратной связи, функциональная схема которого показана на рис. 4.18, а. При бесконечно большом коэффициенте передачи усилителя К ->бесконечности выходное напряжение V out = (V in ) 1/2

Составим схему замещения этого усилителя, используя компоненты, разрешенные в программе PSpice (рис. 4.18, б). С помощью нелинейного источника Е1 осуществляется вычитание напряжений V in , V 0 и усиление разностного сигнала в К раз. Выходное напряжение V ou , возводится в квадрат с помощью нелинейного источника Е2. Каждый источник напряжения замкнут на большое сопротивление, чтобы в схеме замещения не было разомкнутых контуров. На входном языке программы PSpice схема замещения описывается следующим образом:

Rin 1 О 1MEG

Е1 2 О POLY(2) (1,0) (3,0) О 1Е6 -1Е6; усилитель-сумматор

R1201MEG

Е2 3 О POLY(2) (2,0) (2,0) 00001; квадратор

R2301MEG

Иллюстрированный самоучитель по OrCAD, Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

а)

Иллюстрированный самоучитель по OrCAD, Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

б)

Рис. 4.18. Моделирование функциональных схем: а - устройство вычисления квадратного корня; б - эквивалентная принципиальная схема для PSpice

Замечание.

Отметим, что наличие в схемном редакторе PSpice Schematics библиотеки символов функциональных блоков amb.slb позволяет не составлять электрические схемы замещения функциональных схем типа рис. 4.18, б, а сразу составлять функциональные схемы из имеющихся стандартных функциональных блоков (см. Приложение 1 [7]).

Продемонстрируем методику решения дифференциальных уравнений на примере системы уравнений

dx 1 /dt=-0,3 x l +x 2 +x 1 2 -3х 1 х 2 -x 1

dx 2 /dt= 0,24 - 0,6x 2 + 4x 1 x 2 - 6x 1 2 x 2 at

с начальными условиями х 1 (0) = 0, х 2 (0) = 0,4. Используя уравнение конденсатора i = Cdu/dt, смоделируем систему дифференциальных уравнений с помощью зависимых источников тока GX1, GX2, подключенных к конденсаторам C1, C2, как показано на рис. 4.19. На входном языке программы PSpice задание на моделирование составляется следующим образом:

DIFFERENTIAL EQUATIONS

GX1 0 1 POLY(3) (1,0) (2,0) (0,0) 0 -0.3 101-300001

GX2 0 2 POLY(3) (1,0) (2,0) (0,0) 0.6 0 -0.6 00400000-6

С1 1 01

С2201

.ICV(1)=OV(2)=0.4

.IRAN 0.1s 40s SKIPBP

Переменные x 1 = V(l), x 2 = V(2).

Иллюстрированный самоучитель по OrCAD, Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

Рис. 4.19. Моделирование системы двух дифференциальных уравнений

 

 
MKPortal©2003-2008 mkportal.it
MultiBoard ©2007-2009 RusMKPortal