Бегун.Рекомендую - рекламодателю
Здесь может быть ваша реклама
|

 Сетевой уровень как средство построения больших сетей

Сетевой уровень как средство построения больших сетей

5.1. Принципы объединения сетей на основе протоколов сетевого уровня

В стандартной модели взаимодействия открытых систем в функции сетевого уровня входит решение следующих задач:

  • передача пакетов между конечными узлами в составных сетях;

  • выбор маршрута передачи пакетов, наилучшего по некоторому критерию;

  • согласование разных протоколов канального уровня, использующихся в отдельных подсетях одной составной сети.

Протоколы сетевого уровня реализуются, как правило, в виде программных модулей и выполняются на конечных узлах-компьютерах, называемых хостами, а также на промежуточных узлах - маршрутизаторах, называемых шлюзами. Функции маршрутизаторов могут выполнять как специализированные устройства, так и универсальные компьютеры с соответствующим программным обеспечением.

5.1.1. Ограничения мостов и коммутаторов

Создание сложной, структурированной сети, интегрирующей различные базовые технологии, может осуществляться и средствами канального уровня: для этого могут быть использованы некоторые типы мостов и коммутаторов. Мост или коммутатор разделяет сеть на сегменты, локализуя трафик внутри сегмента, что делает линии связи разделяемыми преимущественно между станциями данного сегмента. Тем самым сеть распадается на отдельные подсети, из которых могут быть построены составные сети достаточно крупных размеров.

Однако построение сложных сетей только на основе повторителей, мостов и коммутаторов имеет существенные ограничения и недостатки.

  • Во-первых, в топологии получившейся сети должны отсутствовать петли. Действительно, мост/коммутатор может решать задачу доставки пакета адресату только тогда, когда между отправителем и получателем существует единственный путь. В то же время наличие избыточных связей, которые и образуют петли, часто необходимо для лучшей балансировки нагрузки, а также для повышения надежности сети за счет образования резервных путей.

  • Во-вторых, логические сегменты сети, расположенные между мостами или коммутаторами, слабо изолированы друг от друга, а именно не защищены от так называемых широковещательных штормов. Если какая-либо станция посылает широковещательное сообщение, то это сообщение передается всем станциям всех логических сегментов сети. Защита от широковещательных штормов в сетях, построенных на основе мостов и коммутаторов, имеет количественный, а не качественный характер: администратор просто ограничивает количество широковещательных пакетов, которое разрешается генерировать некоторому узлу в единицу времени. Использование же механизма виртуальных сетей, реализованного во многих коммутаторах, хотя и позволяет достаточно гибко создавать изолированные по трафику группы станций, но при этом изолирует их полностью, так что узлы одной виртуальной сети не могут взаимодействовать с узлами другой виртуальной сети.

  • В-третьих, в сетях, построенных на основе мостов и коммутаторов, достаточно сложно решается задача управления трафиком на основе значения данных, содержащихся в пакете. В таких сетях это возможно только с помощью пользовательских фильтров, для задания которых администратору приходится иметь дело с двоичным представлением содержимого пакетов.

  • В-четвертых, реализация транспортной подсистемы только средствами физического и канального уровней, к которым относятся мосты и коммутаторы, приводит к недостаточно гибкой, одноуровневой системе адресации: в качестве адреса назначения используется МАС - адрес, жестко связанный с сетевым адаптером.

  • Наконец, возможностью трансляции протоколов канального уровня обладают далеко не все типы мостов и коммутаторов, к тому же эти возможности ограничены. В частности, в объединяемых сетях должны совпадать максимально допустимые размеры полей данных в кадрах, так как мостами и коммутаторами не поддерживается функция фрагментации кадров. Наличие серьезных ограничений у протоколов канального уровня показывает, что построение на основе средств этого уровня больших неоднородных сетей является весьма проблематичным. Естественное решение в этих случаях - это привлечение средств более высокого, сетевого уровня.

5.1.2. Понятие internetworking

Основная идея введения сетевого уровня состоит в следующем. Сеть в общем случае рассматривается как совокупность нескольких сетей и называется составной сетью или интерсетью (internetwork или internet). Сети, входящие в составную сеть, называются подсетями (subnet), составляющими сетями или просто сетями (рис. 5.1).

Компьютерные сети (учебник), Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

Рис. 5.1. Архитектура составной сети

Подсети соединяются между собой маршрутизаторами. Компонентами составной сети могут являться как локальные, так и глобальные сети. Внутренняя структура каждой сети на рисунке не показана, так как она не имеет значения при рассмотрении сетевого протокола. Все узлы в пределах одной подсети взаимодействуют, используя единую для них технологию. Так, в составную сеть, показанную на рисунке, входит несколько сетей разных технологий: локальные сети Ethernet, Fast Ethernet, Token Ring, FDDI и глобальные сети frame relay, X.25, ISDN. Каждая из этих технологий достаточна для того, чтобы организовать взаимодействие всех узлов в своей подсети, но не способна построить информационную связь между произвольно выбранными узлами, принадлежащими разным подсетям, например между узлом А и узлом В на рис. 5.1. Следовательно, для организации взаимодействия между любой произвольной парой узлов этой «большой» составной сети требуются дополнительные средства. Такие средства и предоставляет сетевой уровень.

Сетевой уровень выступает в качестве координатора, организующего работу всех подсетей, лежащих на пути продвижения пакета по составной сети. Для перемещения данных в пределах подсетей сетевой уровень обращается к используемым в этих подсетях технологиям.

Хотя многие технологии локальных сетей (Ethernet, Token Ring, FDDI, Fast Ethernet и др.) используют одну и ту же систему адресации узлов на основе МАС - адресов, существует немало технологий (X.25, АТМ, frame relay), в которых применяются другие схемы адресации. Адреса, присвоенные узлам в соответствии с технологиями подсетей, называют локальными. Чтобы сетевой уровень мог выполнить свою задачу, ему необходима собственная система адресации, не зависящая от способов адресации узлов в отдельных подсетях, которая позволила бы на сетевом уровне универсальным и однозначным способами идентифицировать любой узел составной сети.

Естественным способом формирования сетевого адреса является уникальная нумерация всех подсетей составной сети и нумерация всех узлов в пределах каждой подсети. Таким образом, сетевой адрес представляет собой пару: номер сети (подсети) и номер узла.

В качестве номера узла может выступать либо локальный адрес этого узла (такая схема принята в стеке IPX/SPX), либо некоторое число, никак не связанное с локальной технологией, которое однозначно идентифицирует узел в пределах данной подсети. В первом случае сетевой адрес становится зависимым от локальных технологий, что ограничивает его применение. Например, сетевые адреса IPX/SPX рассчитаны на работу в составных сетях, объединяющих сети, в которых используются только МАС - адреса или адреса аналогичного формата. Второй подход более универсален, он характерен для стека TCP/IP. И в том и другом случае каждый узел составной сети имеет наряду со своим локальным адресом еще один - универсальный сетевой адрес.

Данные, которые поступают на сетевой уровень и которые необходимо передать через составную сеть, снабжаются заголовком сетевого уровня. Данные вместе с заголовком образуют пакет. Заголовок пакета сетевого уровня имеет унифицированный формат, не зависящий от форматов кадров канального уровня тех сетей, которые могут входить в объединенную сеть, и несет наряду с другой служебной информацией данные о номере сети, которой предназначается этот пакет. Сетевой уровень определяет маршрут и перемещает пакет между подсетями.

При передаче пакета из одной подсети в другую пакет сетевого уровня, инкапсулированный в прибывший канальный кадр первой подсети, освобождается от заголовков этого кадра и окружается заголовками кадра канального уровня следующей подсети. Информацией, на основе которой делается эта замена, являются служебные поля пакета сетевого уровня. В поле адреса назначения нового кадра указывается локальный адрес следующего маршрутизатора.


ПРИМЕЧАНИЕ Если в подсети доставка данных осуществляется средствами канального и физического уровней (как, например, в стандартных локальных сетях), то пакеты сетевого уровня упаковываются в кадры канального уровня. Если же в какой-либо подсети для транспортировки сообщений используется технология, основанная на стеках с большим числом уровней, то пакеты сетевого уровня упаковываются в блоки передаваемых данных самого высокого уровня подсети.


Если проводить аналогию между взаимодействием разнородных сетей и перепиской людей из разных стран, то сетевая информация - это общепринятый индекс страны, добавленный к адресу письма, написанному на одном из сотни языков земного шара, например на санскрите. И даже если это письмо должно пройти через множество стран, почтовые работники которых не знают санскрита, понятный им индекс страны-адресата подскажет, через какие промежуточные страны лучше передать письмо, чтобы оно кратчайшим путем попало в Индию. А уже там работники местных почтовых отделений смогут прочитать точный адрес, указывающий город, улицу, дом и индивидуума, и доставить письмо адресату, так как адрес написан на языке и в форме, принятой в данной стране.

Основным полем заголовка сетевого уровня является номер сети-адресата. В рассмотренных нами ранее протоколах локальных сетей такого поля в кадрах предусмотрено не было - предполагалось, что все узлы принадлежат одной сети. Явная нумерация сетей позволяет протоколам сетевого уровня составлять точную карту межсетевых связей и выбирать рациональные маршруты при любой их топологии, в том числе альтернативные маршруты, если они имеются, что не умеют делать мосты и коммутаторы.

Кроме номера сети заголовок сетевого уровня должен содержать и другую информацию, необходимую для успешного перехода пакета из сети одного типа в сеть другого типа. К такой информации может относиться, например:

  • номер фрагмента пакета, необходимый для успешного проведения операций сборки-разборки фрагментов при соединении сетей с разными максимальными размерами пакетов;

  • время жизни пакета, указывающее, как долго он путешествует по интерсети, это время может использоваться для уничтожения «заблудившихся» пакетов;

  • качество услуги - критерий выбора маршрута при межсетевых передачах - например, узел-отправитель может потребовать передать пакет с максимальной надежностью, возможно, в ущерб времени доставки.

Когда две или более сети организуют совместную транспортную службу, то такой режим взаимодействия обычно называют межсетевым взаимодействием (internetworking).

5.1.3. Принципы маршрутизации

Важнейшей задачей сетевого уровня является маршрутизация - передача пакетов между двумя конечными узлами в составной сети.

Рассмотрим принципы маршрутизации на примере составной сети, изображенной на рис. 5.2. В этой сети 20 маршрутизаторов объединяют 18 сетей в общую сеть; S1, S2, ... , S20 - это номера сетей. Маршрутизаторы имеют по нескольку портов (по крайней мере, по два), к которым присоединяются сети. Каждый порт маршрутизатора можно рассматривать как отдельный узел сети: он имеет собственный сетевой адрес и собственный локальный адрес в той подсети, которая к нему подключена. Например, маршрутизатор под номером 1 имеет три порта, к которым подключены сети S1, S2, S3. На рисунке сетевые адреса этих портов обозначены как М1(1), Ml (2) и М1(3). Порт М1(1) имеет локальный адрес в сети с номером S1, порт Ml (2) - в сети S2, а порт М1(3) - в сети S3. Таким образом, маршрутизатор можно рассматривать как совокупность нескольких узлов, каждый из которых входит в свою сеть. Как единое устройство маршрутизатор не имеет ни отдельного сетевого адреса, ни какого-либо локального адреса.

Компьютерные сети (учебник), Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

Рис. 5.2. Принципы маршрутизации в составной сети


ПРИМЕЧАНИЕ Если маршрутизатор имеет блок управления (например, SNMP-управления), то этот блок имеет собственные локальный и сетевой адреса, по которым к нему обращается центральная станция управления, находящаяся где-то в составной сети.


В сложных составных сетях почти всегда существует несколько альтернативных маршрутов для передачи пакетов между двумя конечными узлами. Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения. Так, пакет, отправленный из узла А в узел В, может пройти через маршрутизаторы 17, 12, 5, 4 и 1 или маршрутизаторы 17,13, 7, 6 и З. Нетрудно найти еще несколько маршрутов между узлами А и В.

Задачу выбора маршрута из нескольких возможных решают маршрутизаторы, а также конечные узлы. Маршрут выбирается на основании имеющейся у этих устройств информации о текущей конфигурации сети, а также на основании указанного критерия выбора маршрута. Обычно в качестве критерия выступает задержка прохождения маршрута отдельным пакетом или средняя пропускная способность маршрута для последовательности пакетов. Часто также используется весьма простой критерий, учитывающий только количество пройденных в маршруте промежуточных маршрутизаторов (хопов).

Чтобы по адресу сети назначения можно было бы выбрать рациональный маршрут дальнейшего следования пакета, каждый конечный узел и маршрутизатор анализируют специальную информационную структуру, которая называется таблицей маршрутизации. Используя условные обозначения для сетевых адресов маршрутизаторов и номеров сетей в том виде, как они приведены на рис. 5.2, посмотрим, как могла бы выглядеть таблица маршрутизации, например, в маршрутизаторе 4 (табл. 5.1).

Таблица 5.1. Таблица маршрутизации маршрутизатора 4

Компьютерные сети (учебник), Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг


ПРИМЕЧАНИЕ Таблица 5.1 значительно упрощена по сравнению с реальными таблицами, например, отсутствуют столбцы с масками, признаками состояния маршрута, временем, в течение которого действительны записи данной таблицы (их применение будет рассмотрено позже). Кроме того, как уже было сказано, здесь указаны адреса сетей условного формата, не соответствующие какому-либо определенному сетевому протоколу. Тем не менее эта таблица содержит основные поля, имеющиеся в реальных таблицах при использовании конкретных сетевых протоколов, таких как IP, IPX или Х.25.


В первом столбце таблицы перечисляются номера сетей, входящих в интерсеть. В каждой строке таблицы следом за номером сети указывается сетевой адрес следующего маршрутизатора (более точно, сетевой адрес соответствующего порта следующего маршрутизатора), на который надо направить пакет, чтобы тот передвигался по направлению к сети с данным номером по рациональному маршруту.

Когда на маршрутизатор поступает новый пакет, номер сети назначения, извлеченный из поступившего кадра, последовательно сравнивается с номерами сетей из каждой строки таблицы. Строка с совпавшим номером сети указывает, на какой ближайший маршрутизатор следует направить пакет. Например, если на какой-либо порт маршрутизатора 4 поступает пакет, адресованный в сеть S6, то из таблицы маршрутизации следует, что адрес следующего маршрутизатора - М2(1), то есть очередным этапом движения данного пакета будет движение к порту 1 маршрутизатора 2.

Поскольку пакет может быть адресован в любую сеть составной сети, может показаться, что каждая таблица маршрутизации должна иметь записи обо всех сетях, входящих в составную сеть. Но при таком подходе в случае крупной сети объем таблиц маршрутизации может оказаться очень большим, что повлияет на время ее просмотра, потребует много места для хранения и т. п. Поэтому на практике число записей в таблице маршрутизации стараются уменьшить за счет использования специальной записи - «маршрутизатор по умолчанию» (default). Действительно, если принять во внимание топологию составной сети, то в таблицах маршрутизаторов, находящихся на периферии составной сети, достаточно записать номера сетей, непосредственно подсоединенных к данному маршрутизатору или расположенных поблизости, на тупиковых маршрутах. Обо всех же остальных сетях можно сделать в таблице единственную запись, указывающую на маршрутизатор, через который пролегает путь ко всем этим сетям. Такой маршрутизатор называется маршрутизатором по умолчанию, а вместо номера сети в соответствующей строке помещается особая запись, например default. В нашем примере таким маршрутизатором по умолчанию для сети S5 является маршрутизатор 5, точнее его порт М5(1). Это означает, что путь из сети S5 почти ко всем сетям большой составной сети пролегает через этот порт маршрутизатора.

Перед тем как передать пакет следующему маршрутизатору, текущий маршрутизатор должен определить, на какой из нескольких собственных портов он должен поместить данный пакет. Для этого служит третий столбец таблицы маршрутизации. Еще раз подчеркнем, что каждый порт идентифицируется собственным сетевым адресом.

Некоторые реализации сетевых протоколов допускают наличие в таблице маршрутизации сразу нескольких строк, соответствующих одному и тому же адресу сети назначения. В этом случае при выборе маршрута принимается во внимание столбец «Расстояние до сети назначения». При этом под расстоянием понимается любая метрика, используемая в соответствии с заданным в сетевом пакете критерием (часто называемым классом сервиса). Расстояние может измеряться хопами, временем прохождения пакета по линиям связи, какой-либо характеристикой надежности линий связи на данном маршруте или другой величиной, отражающей качество данного маршрута по отношению к заданному критерию. Если маршрутизатор поддерживает несколько классов сервиса пакетов, то таблица маршрутов составляется и применяется отдельно для каждого вида сервиса (критерия выбора маршрута).

В табл. 5.1 расстояние между сетями измерялось хопами. Расстояние для сетей, непосредственно подключенных к портам маршрутизатора, здесь принимается равным 0, однако в некоторых реализациях отсчет расстояний начинается с 1.

Наличие нескольких маршрутов к одному узлу делают возможным передачу трафика к этому узлу параллельно по нескольким каналам связи, это повышает пропускную способность и надежность сети.

Задачу маршрутизации решают не только промежуточные узлы - маршрутизаторы, но и конечные узлы - компьютеры. Средства сетевого уровня, установленные на конечном узле, при обработке пакета должны, прежде всего, определить, направляется ли он в другую сеть или адресован какому-нибудь узлу данной сети. Если номер сети назначения совпадает с номером данной сети, то для данного пакета не требуется решать задачу маршрутизации. Если же номера сетей отправления и назначения не совпадают, то маршрутизация нужна. Таблицы маршрутизации конечных узлов полностью аналогичны таблицам маршрутизации, хранящимся на маршрутизаторах.

Обратимся снова к сети, изображенной на рис. 5.2. Таблица маршрутизации для конечного узла В могла бы выглядеть следующим образом (табл. 5.2). Здесь MB - сетевой адрес порта компьютера В. На основании этой таблицы конечный узел В выбирает, на какой из двух имеющихся в локальной сети S3 маршрутизаторов следует посылать тот или иной пакет.

Таблица 5.2. Таблица маршрутизации конечного узла В

Компьютерные сети (учебник), Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

Конечные узлы в еще большей степени, чем маршрутизаторы, пользуются приемом маршрутизации по умолчанию. Хотя они также в общем случае имеют в своем распоряжении таблицу маршрутизации, ее объем обычно незначителен, что объясняется периферийным расположением всех конечных узлов. Конечный узел часто вообще работает без таблицы маршрутизации, имея только сведения об адресе маршрутизатора по умолчанию. При наличии одного маршрутизатора в локальной сети этот вариант - единственно возможный для всех конечных узлов. Но даже при наличии нескольких маршрутизаторов в локальной сети, когда перед конечным узлом стоит проблема их выбора, задание маршрута по умолчанию часто используется в компьютерах для сокращения объема их таблицы маршрутизации.

Ниже помещена таблица маршрутизации другого конечного узла составной сети - узла А (табл. 5.3). Компактный вид таблицы маршрутизации отражает тот факт, что все пакеты, направляемые из узла А, либо не выходят за пределы сети S12, либо непременно проходят через порт 1 маршрутизатора 17. Этот маршрутизатор и определен в таблице маршрутизации в качестве маршрутизатора по умолчанию.

Таблица 5.3. Таблица маршрутизации конечного узла А

Компьютерные сети (учебник), Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

Еще одним отличием работы маршрутизатора и конечного узла при выборе маршрута является способ построения таблицы маршрутизации. Если маршрутизаторы обычно автоматически создают таблицы маршрутизации, обмениваясь служебной информацией, то для конечных узлов таблицы маршрутизации часто создаются вручную администраторами и хранятся в виде постоянных файлов на дисках.

5.1.4. Протоколы маршрутизации

Задача маршрутизации решается на основе анализа таблиц маршрутизации, размещенных во всех маршрутизаторах и конечных узлах сети. Каким же образом происходит формирование этих таблиц? Какими средствами обеспечивается адекватность содержащейся в них информации постоянно изменяющейся структуре сети? Основная работа по созданию таблиц маршрутизации выполняется автоматически, но и возможность вручную скорректировать или дополнить таблицу тоже, как правило, предусматривается.

Для автоматического построения таблиц маршрутизации маршрутизаторы обмениваются информацией о топологии составной сети в соответствии со специальным служебным протоколом. Протоколы этого типа называются протоколами маршрутизации (или маршрутизирующими протоколами). Протоколы маршрутизации (например, RIP, OSPF, NLSP) следует отличать от собственно сетевых протоколов (например, IP, IPX). И те и другие выполняют функции сетевого уровня модели OSI - участвуют в доставке пакетов адресату через разнородную составную сеть. Но в то время как первые собирают и передают по сети чисто служебную информацию, вторые предназначены для передачи пользовательских данных, как это делают протоколы канального уровня. Протоколы маршрутизации используют сетевые протоколы как транспортное средство. При обмене маршрутной информацией пакеты протокола маршрутизации помещаются в поле данных пакетов сетевого уровня или даже транспортного уровня, поэтому с точки зрения вложенности пакетов протоколы маршрутизации формально следовало бы отнести к более высокому уровню, чем сетевой.

В том, что маршрутизаторы для принятия решения о продвижении пакета обращаются к адресным таблицам, можно увидеть их некоторое сходство с мостами и коммутаторами. Однако природа используемых ими адресных таблиц сильно различается. Вместо MAC - адресов в таблицах маршрутизации указываются номера сетей, которые соединяются в интерсеть. Другим отличием таблиц маршрутизации от адресных таблиц мостов является способ их создания. В то время как мост строит таблицу, пассивно наблюдая за проходящими через него информационными кадрами, посылаемыми конечными узлами сети друг другу, маршрутизаторы по своей инициативе обмениваются специальными служебными пакетами, сообщая соседям об известных им сетях в интерсети, маршрутизаторах и о связях этих сетей с маршрутизаторами. Обычно учитывается не только топология связей, но и их пропускная способность и состояние. Это позволяет маршрутизаторам быстрее адаптироваться к изменениям конфигурации сети, а также правильно передавать пакеты в сетях с произвольной топологией, допускающей наличие замкнутых контуров.

С помощью протоколов маршрутизации маршрутизаторы составляют карту связей сети той или иной степени подробности. На основании этой информации для каждого номера сети принимается решение о том, какому следующему маршрутизатору надо передавать пакеты, направляемые в эту сеть, чтобы маршрут оказался рациональным. Результаты этих решений заносятся в таблицу маршрутизации. При изменении конфигурации сети некоторые записи в таблице становятся недействительными. В таких случаях пакеты, отправленные по ложным маршрутам, могут зацикливаться и теряться. От того, насколько быстро протокол маршрутизации приводит в соответствие содержимое таблицы реальному состоянию сети, зависит качество работы всей сети.

Протоколы маршрутизации могут быть построены на основе разных алгоритмов, отличающихся способами построения таблиц маршрутизации, способами выбора наилучшего маршрута и другими особенностями своей работы.

Во всех описанных выше примерах при выборе рационального маршрута определялся только следующий (ближайший) маршрутизатор, а не вся последовательность маршрутизаторов от начального до конечного узла. В соответствии с этим подходом маршрутизация выполняется по распределенной схеме - каждый маршрутизатор ответственен за выбор только одного шага маршрута, а окончательный маршрут складывается в результате работы всех маршрутизаторов, через которые проходит данный пакет. Такие алгоритмы маршрутизации называются одношаговыми.

Существует и прямо противоположный, многошаговый подход - маршрутизация от источника (Source Routing). В соответствии с ним узел-источник задает в отправляемом в сеть пакете полный маршрут его следования через все промежуточные маршрутизаторы. При использовании многошаговой маршрутизации нет необходимости строить и анализировать таблицы маршрутизации. Это ускоряет прохождение пакета по сети, разгружает маршрутизаторы, но при этом большая нагрузка ложится на конечные узлы. Эта схема в вычислительных сетях применяется сегодня гораздо реже, чем схема распределенной одношаговой маршрутизации. Однако в новой версии протокола IP наряду с классической одношаговой маршрутизацией будет разрешена и маршрутизация от источника.

Одношаговые алгоритмы в зависимости от способа формирования таблиц маршрутизации делятся на три класса:

  • алгоритмы фиксированной (или статической) маршрутизации;

  • алгоритмы простой маршрутизации;

  • алгоритмы адаптивной (или динамической) маршрутизации.

В алгоритмах фиксированной маршрутизации все записи в таблице маршрутизации являются статическими. Администратор сети сам решает, на какие маршрутизаторы надо передавать пакеты с теми или иными адресами, и вручную (например, с помощью утилиты route ОС Unix или Windows NT) заносит соответствующие записи в таблицу маршрутизации. Таблица, как правило, создается в процессе загрузки, в дальнейшем она используется без изменений до тех пор, пока ее содержимое не будет отредактировано вручную. Такие исправления могут понадобиться, например, если в сети отказывает какой-либо маршрутизатор и его функции возлагаются на другой маршрутизатор. Различают одномаршрутные таблицы, в которых для каждого адресата задан один путь, и многомаршрутные таблицы, определяющие несколько альтернативных путей для каждого адресата. В многомаршрутных таблицах должно быть задано правило выбора одного из маршрутов. Чаще всего один путь является основным, а остальные - резервными. Понятно, что алгоритм фиксированной маршрутизации с его ручным способом формирования таблиц маршрутизации приемлем только в небольших сетях с простой топологией. Однако этот алгоритм может быть эффективно использован и для работы на магистралях крупных сетей, так как сама магистраль может иметь простую структуру с очевидными наилучшими путями следования пакетов в подсети, присоединенные к магистрали.

В алгоритмах простой маршрутизации таблица маршрутизации либо вовсе не используется, либо строится без участия протоколов маршрутизации. Выделяют три типа простой маршрутизации:

  • случайная маршрутизация, когда прибывший пакет посылается в первом попавшем случайном направлении, кроме исходного;

  • лавинная маршрутизация, когда пакет широковещательно посылается по всем возможным направлениям, кроме исходного (аналогично обработке мостами кадров с неизвестным адресом);

  • маршрутизация по предыдущему опыту, когда выбор маршрута осуществляется по таблице, но таблица строится по принципу моста путем анализа адресных полей пакетов, появляющихся на входных портах.

Самыми распространенными являются алгоритмы адаптивной (или динамической) маршрутизации. Эти алгоритмы обеспечивают автоматическое обновление таблиц маршрутизации после изменения конфигурации сети. Протоколы, построенные на основе адаптивных алгоритмов, позволяют всем маршрутизаторам собирать информацию о топологии связей в сети, оперативно отрабатывая все изменения конфигурации связей. В таблицах маршрутизации при адаптивной маршрутизации обычно имеется информация об интервале времени, в течение которого данный маршрут будет оставаться действительным. Это время называют временем жизни маршрута (Time To Live, TTL).

Адаптивные алгоритмы обычно имеют распределенный характер, который выражается в том, что в сети отсутствуют какие-либо выделенные маршрутизаторы, которые собирали бы и обобщали топологическую информацию: эта работа распределена между всеми маршрутизаторами.


ПРИМЕЧАНИЕ В последнее время наметилась тенденция использовать так называемые серверы маршрутов. Сервер маршрутов собирает маршрутную информацию, а затем раздает ее по запросам маршрутизаторам, которые освобождаются в этом случае от функции создания таблиц маршрутизации, либо создают только части этих таблиц. Появились специальные протоколы взаимодействия маршрутизаторов с серверами маршрутов, например Next Hop Resolution Protocol (NHRP).


Адаптивные алгоритмы маршрутизации должны отвечать нескольким важным требованиям. Во-первых, они должны обеспечивать, если не оптимальность, то хотя бы рациональность маршрута. Во-вторых, алгоритмы должны быть достаточно простыми, чтобы при их реализации не тратилось слишком много сетевых ресурсов, в частности они не должны требовать слишком большого объема вычислений или порождать интенсивный служебный трафик. И наконец, алгоритмы маршрутизации должны обладать свойством сходимости, то есть всегда приводить к однозначному результату за приемлемое время.

Адаптивные протоколы обмена маршрутной информацией, применяемые в настоящее время в вычислительных сетях, в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:

  • дистанционно-векторные алгоритмы (Distance Vector Algorithms, DVA);

  • алгоритмы состояния связей (Link State Algorithms, LSA).

В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор, компонентами которого являются расстояния от данного маршрутизатора до всех известных ему сетей. Под расстоянием обычно понимается число хопов. Возможна и другая метрика, учитывающая не только число промежуточных маршрутизаторов, но и время прохождения пакетов по сети между соседними маршрутизаторами. При получении вектора от соседа маршрутизатор наращивает расстояния до указанных в векторе сетей на расстояние до данного соседа. Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце концов, каждый маршрутизатор узнает информацию обо всех имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.

Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях, В больших сетях они засоряют линии связи интенсивным широковещательным трафиком, к тому же изменения конфигурации могут отрабатываться по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией - вектором дистанций, к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет.

Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP, который распространен в двух версиях - RIP IP, работающий с протоколом IP, и RIP IPX, работающий с протоколом IPX.

Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. «Широковещательная» рассылка (то есть передача пакета всем непосредственным соседям маршрутизатора) используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто. Вершинами графа являются как маршрутизаторы, так и объединяемые ими сети. Распространяемая по сети информация состоит из описания связей различных типов: маршрутизатор - маршрутизатор, маршрутизатор - сеть,

Чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами HELLO со своими ближайшими соседями. Этот служебный трафик также засоряет сеть, но не в такой степени как, например, RIP-пакеты, так как пакеты HELLO имеют намного меньший объем.

Протоколами, основанными на алгоритме состояния связей, являются протоколы IS-IS (Intermediate System to Intermediate System) стека OSI, OSPF (Open Shortest Path First) стека TCP/IP и недавно реализованный протокол NLSP стека Novell.

5.1.5. Функции маршрутизатора

Основная функция маршрутизатора - чтение заголовков пакетов сетевых протоколов, принимаемых и буферизуемых по каждому порту (например, IPX, IP, AppleTalk или DECnet), и принятие решения о дальнейшем маршруте следования пакета по его сетевому адресу, включающему, как правило, номер сети и номер узла.

Функции маршрутизатора могут быть разбиты на 3 группы в соответствии с уровнями модели OSI (рис. 5.3).

Компьютерные сети (учебник), Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

Рис. 5.3. Функциональная модель маршрутизатора

Уровень интерфейсов

На нижнем уровне маршрутизатор, как и любое устройство, подключенное к сети, обеспечивает физический интерфейс со средой передачи, включая согласование уровней электрических сигналов, линейное и логическое кодирование, оснащение определенным типом разъема. В разных моделях маршрутизаторов часто предусматриваются различные наборы физических интерфейсов, представляющих собой комбинацию портов для подсоединения локальных и глобальных сетей. С каждым интерфейсом для подключения локальной сети неразрывно связан определенный протокол канального уровня - например, Ethernet, Token Ring, FDDI. Интерфейсы для присоединения к глобальным сетям чаще всего определяют только некоторый стандарт физического уровня, над которым в маршрутизаторе могут работать различные протоколы канального уровня. Например, глобальный порт может поддерживать интерфейс V.35, над которым могут работать протоколы канального уровня: LAP-B (используемый в сетях X.25), LAP-F (используемый в сетях frame relay), LAP-D (используемый в сетях ISDN). Разница между интерфейсами локальных и глобальных сетей объясняется тем, что технологии локальных сетей работают по собственным стандартам физического уровня, которые не могут, как правило, использоваться в других технологиях, поэтому интерфейс для локальной сети представляет собой сочетание физического и канального уровней и носит название по имени соответствующей технологии - например, интерфейс Ethernet.

Интерфейсы маршрутизатора выполняют полный набор функций физического и канального уровней по передаче кадра, включая получение доступа к среде (если это необходимо), формирование битовых сигналов, прием кадра, подсчет его контрольной суммы и передачу поля данных кадра верхнему уровню, в случае если контрольная сумма имеет корректное значение.


ПРИМЕЧАНИЕ Как и любой конечный узел, каждый порт маршрутизатора имеет собственный аппаратный адрес (в локальных сетях МАС - адрес), по которому ему и направляются кадры, требующие маршрутизации, другими узлами сети.


Перечень физических интерфейсов, которые поддерживает та или иная модель маршрутизатора, является его важнейшей потребительской характеристикой. Маршрутизатор должен поддерживать все протоколы канального и физического уровней, используемые в каждой из сетей, к которым он будет непосредственно присоединен. На рис. 5.3 показана функциональная модель маршрутизатора с четырьмя портами, реализующими следующие физические интерфейсы: 10Base-T и 10Base-2 для двух портов Ethernet, UTP для Token Ring и V.35, над которым могут работать протоколы LAP-B, LAP-D или LAP-F, обеспечивая подключение к сетям Х.25, ISDN или frame relay.

Кадры, которые поступают на порты маршрутизатора, после обработки соответствующими протоколами физического и канального уровней, освобождаются от заголовков канального уровня. Извлеченные из поля данных кадра пакеты передаются модулю сетевого протокола.

Уровень сетевого протокола

Сетевой протокол в свою очередь извлекает из пакета заголовок сетевого уровня и анализирует содержимое его полей. Прежде всего проверяется контрольная сумма, и если пакет пришел поврежденным, то он отбрасывается. Выполняется проверка, не превысило ли время, которое провел пакет в сети (время жизни пакета), допустимой величины. Если превысило - то пакет также отбрасывается. На этом этапе вносятся корректировки в содержимое некоторых полей, например, наращивается время жизни пакета, пересчитывается контрольная сумма.

На сетевом уровне выполняется одна из важнейших функций маршрутизатора - фильтрация трафика. Маршрутизатор, обладая более высоким интеллектом, нежели мосты и коммутаторы, позволяет задавать и может отрабатывать значительно более сложные правила фильтрации. Пакет сетевого уровня, находящийся в поле данных кадра, для мостов/коммутаторов представляется неструктурированной двоичной последовательностью. Маршрутизаторы же, программное обеспечение которых содержит модуль сетевого протокола, способны производить разбор и анализ отдельных полей пакета. Они оснащаются развитыми средствами пользовательского интерфейса, которые позволяют администратору без особых усилий задавать сложные правила фильтрации. Они, например, могут запретить прохождение в корпоративную сеть всех пакетов, кроме пакетов, поступающих из подсетей этого же предприятия. Фильтрация в данном случае производится по сетевым адресам, и все пакеты, адреса которых не входят в разрешенный диапазон, отбрасываются. Маршрутизаторы, как правило, также могут анализировать структуру сообщений транспортного уровня, поэтому фильтры могут не пропускать в сеть сообщения определенных прикладных служб, например службы tehet, анализируя поле типа протокола в транспортном сообщении.

В случае если интенсивность поступления пакетов выше интенсивности, с которой они обрабатываются, пакеты могут образовать очередь. Программное обеспечение маршрутизатора может реализовать различные дисциплины обслуживания очередей пакетов: в порядке поступления по принципу «первый пришел - первым обслужен» (First Input First Output, FIFO), случайное раннее обнаружение, когда обслуживание идет по правилу FIFO, но при достижении длиной очереди некоторого порогового значения вновь поступающие пакеты отбрасываются (Random Early Detection, RED), а также различные варианты приоритетного обслуживания.

К сетевому уровню относится основная функция маршрутизатора - определение маршрута пакета. По номеру сети, извлеченному из заголовка пакета, модуль сетевого протокола находит в таблице маршрутизации строку, содержащую сетевой адрес следующего маршрутизатора, и номер порта, на который нужно передать данный пакет, чтобы он двигался в правильном направлении. Если в таблице отсутствует запись о сети назначения пакета и к тому же нет записи о маршрутизаторе по умолчанию, то данный пакет отбрасывается.

Перед тем как передать сетевой адрес следующего маршрутизатора на канальный уровень, необходимо преобразовать его в локальный адрес той технологии, которая используется в сети, содержащей следующий маршрутизатор. Для этого сетевой протокол обращается к протоколу разрешения адресов. Протоколы этого типа устанавливают соответствие между сетевыми и локальными адресами либо на основании заранее составленных таблиц, либо путем рассылки широковещательных запросов. Таблица соответствия локальных адресов сетевым адресам строится отдельно для каждого сетевого интерфейса. Протоколы разрешения адресов занимают промежуточное положение между сетевым и канальным уровнями.

С сетевого уровня пакет, локальный адрес следующего маршрутизатора и номер порта маршрутизатора передаются вниз, канальному уровню. На основании указанного номера порта осуществляется коммутация с одним из интерфейсов маршрутизатора, средствами которого выполняется упаковка пакета в кадр соответствующего формата. В поле адреса назначения заголовка кадра помещается локальный адрес следующего маршрутизатора. Готовый кадр отправляется в сеть.

Уровень протоколов маршрутизации

Сетевые протоколы активно используют в своей работе таблицу маршрутизации, но ни ее построением, ни поддержанием ее содержимого не занимаются. Эти функции выполняют протоколы маршрутизации. На основании этих протоколов маршрутизаторы обмениваются информацией о топологии сети, а затем анализируют полученные сведения, определяя наилучшие по тем или иным критериям маршруты. Результаты анализа и составляют содержимое таблиц маршрутизации.

Помимо перечисленных выше функций, на маршрутизаторы могут быть возложены и другие обязанности, например операции, связанные с фрагментацией. Более детально работа маршрутизаторов будет описана при рассмотрении конкретных протоколов сетевого уровня.

5.1.6. Реализация межсетевого взаимодействия средствами TCP/IP

В настоящее время стек TCP/IP является самым популярным средством организации составных сетей. На рис. 5.4 показана доля, которую составляет тот или иной стек протоколов в общемировой инсталляционной сетевой базе. До 1996 года бесспорным лидером был стек IPX/SPX компании Novell, но затем картина резко изменилась - стек TCP/IP по темпам роста числа установок намного стал опережать другие стеки, а с 1998 года вышел в лидеры и в абсолютном выражении. Именно поэтому дальнейшее изучение функций сетевого уровня будет проводиться на примере стека TCP/IP.

Компьютерные сети (учебник), Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

Рис. 5.4. Стек TCP/IP становится основным средством построения составных сетей

Многоуровневая структура стека TCP/IP

В стеке TCP/IP определены 4 уровня (рис. 5.5). Каждый из этих уровней несет на себе некоторую нагрузку по решению основной задачи - организации надежной и производительной работы составной сети, части которой построены на основе разных сетевых технологий.

Компьютерные сети (учебник), Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

Рис. 5.5. Многоуровневая архитектура стека TCP/IP

Уровень межсетевого взаимодействия

Стержнем всей архитектуры является уровень межсетевого взаимодействия, который реализует концепцию передачи пакетов в режиме без установления соединений, то есть дейтаграммным способом. Именно этот уровень обеспечивает возможность перемещения пакетов по сети, используя тот маршрут, который в данный момент является наиболее рациональным. Этот уровень также называют уровнем internet, указывая тем самым на основную его функцию - передачу данных через составную сеть.

Основным протоколом сетевого уровня (в терминах модели OSI) в стеке является протокол IP (Internet Protocol). Этот протокол изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Так как протокол IP является дейтаграммным протоколом, он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов ICMP сообщает о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Основной уровень

Поскольку на сетевом уровне не устанавливаются соединения, то нет никаких гарантий, что все пакеты будут доставлены в место назначения целыми и невредимыми или придут в том же порядке, в котором они были отправлены. Эту задачу -обеспечение надежной информационной связи между двумя конечными узлами -решаетосновной уровень стека TCP/IP, называемый также транспортным.

На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования логических соединений. Этот протокол позволяет равноранговым объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт в любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части - сегменты, и передает их ниже лежащему уровню межсетевого взаимодействия. После того как эти сегменты будут доставлены средствами уровня межсетевого взаимодействия в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и главный протокол уровня межсетевого взаимодействия IP, и выполняет только функции связующего звена (мультиплексора) между сетевым протоколом и многочисленными службами прикладного уровня или пользовательскими процессами.

Прикладной уровень

Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. Прикладной уровень реализуется программными системами, построенными в архитектуре клиент-сервер, базирующимися на протоколах нижних уровней. В отличие от протоколов остальных трех уровней, протоколы прикладного уровня занимаются деталями конкретного приложения и «не интересуются» способами передачи данных по сети. Этот уровень постоянно расширяется за счет присоединения к старым, прошедшим многолетнюю эксплуатацию сетевым службам типа Telnet, FTP, TFTP, DNS, SNMP сравнительно новых служб таких, например, как протокол передачи гипертекстовой информации HTTP.

Уровень сетевых интерфейсов

Идеологическим отличием архитектуры стека TCP/IP от многоуровневой организации других стеков является интерпретация функций самого нижнего уровня - уровня сетевых интерфейсов. Протоколы этого уровня должны обеспечивать интеграцию в составную сеть других сетей, причем задача ставится так: сеть TCP/IP должна иметь средства включения в себя любой другой сети, какую бы внутреннюю технологию передачи данных эта сеть не использовала. Отсюда следует, что этот уровень нельзя определить раз и навсегда. Для каждой технологии, включаемой в составную сеть подсети, должны быть разработаны собственные интерфейсные средства. К таким интерфейсным средствам относятся протоколы инкапсуляции IP-пакетов уровня межсетевого взаимодействия в кадры локальных технологий. Например, документ RFC 1042 определяет способы инкапсуляции IP-пакетов в кадры технологий IEEE 802. Для этих целей должен использоваться заголовок LLC/ SNAP, причем в поле Type заголовка SNAP должен быть указан код 0х0800. Только для протокола Ethernet в RFC 1042 сделано исключение - помимо заголовка LLC/ SNAP разрешается использовать кадр Ethernet DIX, не имеющий заголовка LLC, зато имеющий поле Type. В сетях Ethernet предпочтительным является инкапсуляция IP-пакета в кадр Ethernet DIX.

Уровень сетевых интерфейсов в протоколах TCP/IP не регламентируется, но он поддерживает все популярные стандарты физического и канального уровней: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений «точка-точка» SLIP и РРР, протоколы территориальных сетей с коммутацией пакетов Х.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии АТМ в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции IP-пакетов в ее кадры (спецификация RFC 1577, определяющая работу IP через сети АТМ, появилась в 1994 году вскоре после принятия основных стандартов этой технологии).

Соответствие уровней стека TCP/IP семиуровневой модели ISO/OSI

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно (рис. 5.6). Рассматривая многоуровневую архитектуру TCP/IP, можно выделить в ней, подобно архитектуре OSI, уровни, функции которых зависят от конкретной технической реализации сети, и уровни, функции которых ориентированны на работу с приложениями (рис. 5.7).

Компьютерные сети (учебник), Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

Рис. 5.6. Соответствие уровней стека TCP/IP семиуровневой модели OSI

Компьютерные сети (учебник), Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

Рис. 5.7. Сетезависимые и сетенезависимые уровни стека TCP/IP

Протоколы прикладного уровня стека TCP/IP работают на компьютерах, выполняющих приложения пользователей. Даже полная смена сетевого оборудования в общем случае не должна влиять на работу приложений, если они получают доступ к сетевым возможностям через протоколы прикладного уровня.

Протоколы транспортного уровня уже более зависят от сети, так как они реализуют интерфейс к уровням, непосредственно организующим передачу данных по сети. Однако, подобно протоколам прикладного уровня, программные модули, реализующие протоколы транспортного уровня, устанавливаются только на конечных узлах. Протоколы двух нижних уровней являются сетезависимыми, а следовательно, программные модули протоколов межсетевого уровня и уровня сетевых интерфейсов устанавливаются как на конечных узлах составной сети, так и на маршрутизаторах.

Каждый коммуникационный протокол оперирует с некоторой единицей передаваемых данных. Названия этих единиц иногда закрепляются стандартом, а чаще просто определяются традицией. В стеке TCP/IP за многие годы его существования образовалась устоявшаяся терминология в этой области (рис. 5.8).

Компьютерные сети (учебник), Программмы,софт,электронные книги,электронн книг,электронная библиотека,чтение электронных книг

Рис. 5.8. Название единиц данных, используемые в TCP/IP

Потоком называют данные, поступающие от приложений на вход протоколов транспортного уровня TCP и UDP.

Протокол TCP нарезает из потока данных сегменты.

Единицу данных протокола UDP часто называют дейтаграммой (или датаграммой). Дейтаграмма - это общее название для единиц данных, которыми оперируют протоколы без установления соединений. К таким протоколам относится и протокол межсетевого взаимодействия IP.

Дейтаграмму протокола IP называют также пакетом.

В стеке TCP/IP принято называть кадрами (фреймами) единицы данных протоколов, на основе которых IP-пакеты переносятся через подсети составной сети. При этом не имеет значения, какое название используется для этой единицы данных в локальной технологии.

Выводы

  • Составная сеть (internetwork или internet) - это совокупность нескольких сетей, называемых также подсетями (subnet), которые соединяются между собой маршрутизаторами. Организация совместной транспортной службы в составной сети называется межсетевым взаимодействием (internetworking).

  • В функции сетевого уровня входит: передача пакетов между конечными узлами в составных сетях, выбор маршрута, согласование локальных технологий отдельных подсетей.

  • Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения. Задачу выбора маршрута из нескольких возможных решают маршрутизаторы и конечные узлы на основе таблиц маршрутизации. Записи в таблицу могут заноситься вручную администратором и автоматически протоколами маршрутизации.

  • Протоколы маршрутизации (например, RIP или OSPF) следует отличать от собственно сетевых протоколов (например, IP или IPX). В то время как первые собирают и передают по сети чисто служебную информацию о возможных маршрутах, вторые предназначены для передачи пользовательских данных.

  • Сетевые протоколы и протоколы маршрутизации реализуются в виде программных модулей на конечных узлах-компьютерах и на промежуточных узлах - маршрутизаторах.

  • Маршрутизатор представляет собой сложное многофункциональное устройство, в задачи которого входит: построение таблицы маршрутизации, определение на ее основе маршрута, буферизация, фрагментация и фильтрация поступающих пакетов, поддержка сетевых интерфейсов. Функции маршрутизаторов могут выполнять как специализированные устройства, так и универсальные компьютеры с соответствующим программным обеспечением.

  • Для алгоритмов маршрутизации характерны одношаговый и многошаговый подходы. Одношаговые алгоритмы делятся на алгоритмы фиксированной, простой и адаптивной маршрутизации. Адаптивные протоколы маршрутизации являются наиболее распространенными и в свою очередь могут быть основаны на дистанционно-векторных алгоритмах и алгоритмах состояния связей.

  • Наибольшее распространение для построения составных сетей в последнее время получил стек TCP/IP. Стек TCP/IP имеет 4 уровня: прикладной, основной, уровень межсетевого взаимодействия и уровень сетевых интерфейсов. Соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

  • Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям: традиционные сетевые службы типа telnet, FTP, TFTP, DNS, SNMP, а также сравнительно новые, такие, например, как протокол передачи гипертекстовой информации HTTP.

  • На основном уровне стека TCP/IP, называемом также транспортным, функционируют протоколы TCP и UDP. Протокол управления передачей TCP решает задачу обеспечения надежной информационной связи между двумя конечными узлами. Дейтаграммный протокол UDP используется как экономичное средство связи уровня межсетевого взаимодействия с прикладным уровнем.

  • Уровень межсетевого взаимодействия реализует концепцию коммутации пакетов в режиме без установления соединений. Основными протоколами этого уровня являются дейтаграммный протокол IP и протоколы маршрутизации (RIP, OSPF, BGP и др.). Вспомогательную роль выполняют протокол межсетевых управляющих сообщений ICMP, протокол группового управления IGMP и протокол разрешения адресов ARP.

  • Протоколы уровня сетевых интерфейсов обеспечивают интеграцию в составную сеть других сетей. Этот уровень не регламентируется, но поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - Ethernet, Token Ring, FDDI и т. д., для глобальных сетей - Х.25, frame relay, PPP, ISDN и т. д.

  • В стеке TCP/IP для именования единиц передаваемых данных на разных уровнях используют разные названия: поток, сегмент, дейтаграмма, пакет, кадр.

5.2. Адресация в IP-сетях

5.2.1. Типы адресов стека TCP/IP

В стеке TCP/IP используются три типа адресов: локальные (называемые также аппаратными), IP-адреса и символьные доменные имена.

В терминологии TCP/IP под локальным адресом понимается такой тип адреса, который используется средствами базовой технологии для доставки данных в пределах подсети, являющейся элементом составной интерсети. В разных подсетях допустимы разные сетевые технологии, разные стеки протоколов, поэтому при создании стека TCP/IP предполагалось наличие разных типов локальных адресов. Если подсетью интерсети является локальная сеть, то локальный адрес - это МАС - адрес. МАС - адрес назначается сетевым адаптерам и сетевым интерфейсам маршрутизаторов. МАС - адреса назначаются производителями оборудования и являются уникальными, так как управляются централизованно. Для всех существующих технологий локальных сетей МАС - адрес имеет формат 6 байт, например 11-AO-17-3D-BC-01. Однако

 
MKPortal©2003-2008 mkportal.it
MultiBoard ©2007-2009 RusMKPortal